
International Journal of Solids and Structures 46 (2009) 322–330
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Thickness effect of a thin film on the stress field due to the eigenstrain
of an ellipsoidal inclusion

Xinghua Liang a,b, Biao Wang b,*, Yulan Liu a

a School of Engineering, Sun Yat-sen University, Guangzhou 510275, China
b Institute of Optoelectronic and Functional Composite Materials, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

a r t i c l e i n f o
Article history:
Received 1 March 2008
Received in revised form 18 August 2008
Available online 12 September 2008

Keywords:
Ellipsoidal inclusion
Eigenstrain
Stress field
Thin film
Thickness
Half-space
0020-7683/$ - see front matter � 2008 Elsevier Ltd
doi:10.1016/j.ijsolstr.2008.08.039

* Corresponding author. Tel./fax: +86 20 8411569
E-mail addresses: liangxh@mail2.sysu.edu.cn (X.
a b s t r a c t

Solutions of the stress field due to the eigenstrain of an ellipsoidal inclusion in the film/
substrate half-space are obtained via the Fourier transforms and Stroh eigenrelation equa-
tions. Based on the acquired solutions, the effect of a thin film’s thickness on the stress field
is investigated with two types of ellipsoidal inclusions considered. The results in this paper
show that if the thickness of the thin film increases, its effect on the stress field will become
weaker, and can even be neglected. In the end, a guide rule is introduced to simplify the
calculation of similar problems in engineering.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The film/substrate system has been widely used to model many physical and mechanical problems, which cover
the areas of: piezoelectricity, thermomechanics, microelectronics, electronomagnetics, elastostatics, elastodynamics,
and so on. In general, as the functional unit in the film/substrate system, the inclusion’s properties can be signifi-
cantly different, depending on the combined effects of film thickness, film surface, interface, eigenstrain and external
stress field, etc. (Romanov et al., 2001; Li et al., 2002). With the rapid development in microminiaturization in the
past few years, the effect of a film’s thickness on the inclusions becomes more and more important, and is worth
further study.

Ever since Kelvin found the first Green’s function of a single point force in the infinite space in 1848, various elastic inclu-
sion problems have been studied. Eshelby (1957, 1959) successfully solved the ellipsoidal inclusion problems in infinite
space. The cuboidal inclusion problems have been solved by Chiu (1977). After Mindlin (1936) obtained the Green’s function
of a point force in semi-infinite space, the study of elastic problems was extended to half-spaces and bi-materials. At a later
time, Green’s function for joined half-spaces in perfect bond was established by Rongved (1955), and, for those in smooth
contact, by Dundurs and Hetenyi (1965).

In recent years, multilayered elastic infinite and semi-infinite spaces have become the focus of a number of studies. Yuan
et al. (2003) performed such a study of the three-dimensional Green’s functions for composite laminates. Pan (1997, 2000),
has done lots of work with bi-materials and multilayered half-spaces. Besides those of the point force, the solutions of sev-
eral different force types in multilayered space were also studied, such as those of the ring force by Yue (1995) and the cone
. All rights reserved.
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by Yue and Yin (1999). Krishnamurthy and Srolovitz (2004) came up with the general solution in thin films for two-
dimensional stress distributions. Kolesnikova and Romanov (2004) developed a virtual circular dislocation–disclination
loops technique for defects in solids, which can obtain the elastic fields and energies of a spherical dilatating inclusion or
a prismatic dislocation loop in a plate and a half-space.

It is important to note that the research conducted on the topic of multilayered spaces, as well as the film/substrate half-
space, mainly focused on single point force, or a ring force. Seldom has work been conducted to consider the stress field due
to the eigenstrain of an ellipsoidal inclusion in the film/substrate half-space. In this paper, the authors successfully devel-
oped solutions for this problem, and investigated the effect of a thin film’s thickness on the stress field. The formulas are
based on the cylindrical system of vector functions and the solutions are expressed in terms of Fourier transforms. Two types
of ellipsoidal inclusions were analyzed in this paper, and a guide rule was suggested to simplify the calculation of similar
problems in the engineering field.

2. Problem description

For the time being, consider an isotropic film/substrate half-space with an ellipsoidal inclusion in the film. The origin of
the Cartesian coordinate system is located on the film’s surface. The distance from the top of the ellipsoidal inclusion to the
surface is denoted d1, while d2 is the distance between the bottom of the ellipsoidal inclusion and the interface. Let t repre-
sent the thickness of the film. Three geometric parameters of the ellipsoidal inclusion are a1, a2, and a3, as shown in Fig. 1.

In the absence of body forces, the differential equation of equilibrium in terms of displacements uk is written as
Cijkluðx1; x2; zÞk;lj ¼ 0; ð1Þ
where i,j,k,l = 1,2,3, and Cijkl is the elastic stiffness tensor.
For the purpose of this paper, the stress components are grouped into two types. They are called traction vector t and in-

plane stress vector s, and respectively,
t ¼ ðr13;r23;r33ÞT; s ¼ ðr11;r12; r22ÞT: ð2Þ
Thus, the free boundary conditions at the film’s surface can be written as
tf ¼ 0 at z ¼ 0; ð3Þ
and the bond conditions at the interface z = t can be written as
uf ¼ us; tf ¼ ts at z ¼ t; ð4Þ
since the displacements and tractions are required to be continuous here.

3. General solutions in the transformed domain

Applying two-dimensional Fourier transforms to Eq. (1)
Fig. 1. An isotropic film/substrate half-space with an ellipsoidal inclusion.
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~uiðy1; y2; zÞ ¼
Z 1

�1

Z 1

�1
uðx1; x2; zÞieiðx1y1þx2y2Þdx1dx2: ð5Þ
This can be revised as second-order ordinary differential equations with respect to z:
Ciakbyayb~uk þ i � ðCiak3 þ Ci3kaÞya~uk;3 � Ci3k3~uk;33 ¼ 0; ð6Þ
where a,b = 1,2, and i ¼
ffiffiffiffiffiffiffi
�1
p

.
In the following, we change the Cartesian coordinate system (y1, y2) to the polar coordinate system (r, h). That is,
y1 ¼ r � n1; y2 ¼ r � n2; ð7Þ
where n1 = cosh and n2 = sinh. Then Eq. (6) can be revised as
r2Ciakbnanb~uk þ i � rðCiak3 þ Ci3kaÞna~uk;3 � Ci3k3~uk;33 ¼ 0: ð8Þ
A general solution of Eq. (8) is defined as
~uðy1; y2; zÞ ¼ a � e�iprz; ð9Þ
and is substituted into Eq. (8). We then obtain the elastic Stroh eigenrelation equations in matrix form
½Q þ pðR þ RTÞ þ p2T�a ¼ 0; ð10Þ
where
Qij ¼ Ciakbnanb; Rij ¼ Ciak3na; Tij ¼ Ci3k3; ð11Þ
and the superscript T denotes the transposition. Eq. (10) is the sixth polynomial in p, and the eigenvalues are either complex
or purely imaginary. Once Eq. (10) is solved, the displacements can be easily obtained by Eq. (9).

The above results are the same as what Pan and Yuan completed in 2000 (Pan and Yuan, 2000), which focused on aniso-
tropic materials. However, with regard to isotropic materials, we have:
Cijkl ¼ kdijdkl þ Gðdikdjl þ dildkjÞ; ð12Þ
where k and G are Lame coefficients, and only two eigenvalues can be solved from Eq. (10): p1 = i and p2 = �i (tri-
ple roots). Thus, for each eigenvalue p, three non-correlation eigenvectors are needed to obtain the general solution
of Eq. (8). Nevertheless, from Eqs. (9) and (10), only two pairs of non-correlation eigenvectors can be found, which
are
a1 ¼ ½sin h;� cos h; 0�T

a2 ¼ ½0;�i; sin h�T
; p ¼ i

(
and

a1 ¼ ½sin h;� cos h;0�T

a2 ¼ ½0; i; sin h�T
; p ¼ �i

(
ð13Þ
To find the third pair of non-correlation eigenvectors, here we redefine the general solution (9) as
~uðy1; y2; zÞ ¼ a � e�iprz þ ir � b � e�iprz: ð14Þ
Substituting it into Eq. (8), we then obtain the final pair of eigenvectors, which are
a3 ¼ ½0; 0;3—4l�T

b3 ¼ ½cos h; sin h; i�T
; p ¼ i

(
and

a3 ¼ ½0;0;3—4l�T

b3 ¼ ½cos h; sin h;�i�T
; p ¼ �i

(
ð15Þ
where l is the Poisson ratio.
Now, the general solution of Eq. (8) is obtained, and can be further expressed as
~u ¼ A1herzivþ A2he�rziw; ð16Þ
where herzi = diag[erz,erz,erz], and v and w are unknown vectors to be determined by the boundary and bond conditions that
will be mentioned in next section.

Matrix A1 and A2 are given, respectively, as
A1 ¼
sin h 0 irz cos h

� cos h �i irz sin h

0 sin h ð3—4lÞ � rz

2
64

3
75;

A2 ¼
sin h 0 i � rz cos h

� cos h i i � rz sin h

0 sin h ð3—4lÞ þ rz

2
64

3
75: ð17Þ
The formulae of t and s can be obtained by applying the stress–displacement relation in the transformed domain
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~rij ¼ �irnaCijka~uk þ Cijk3~uk;3; ð18Þ
as

~t ¼ �i � rðB1herzivþ B2he�rziwÞ
~s ¼ �i � rðC1herzivþ C2he�rziwÞ

; ð19Þ

where;

B1 ¼ G

cos h sin h i � sin h 2ð1� rz� 2lÞ cos h

1þ sin2 h �i � cos h 2ð1� rz� 2lÞ sin h

i � 2 sin h 0 2ið2� rz� 2lÞ

2
64

3
75;

B2 ¼ G

cos h sin h �i � sin h 2ð1þ rz� 2lÞ cos h

1þ sin2 h i � cos h 2ð1þ rz� 2lÞ sin h

�i � 2 sin h 0 �2ið2þ rz� 2lÞ

2
64

3
75;

C1 ¼ G

0 sin 2h i � ðrzþ 4lþ rz cos 2hÞ
�i � cos h � cos 2h i � rz sin 2h

�i � 2 sin h � sin 2h i � ðrzþ 4l� rz cos 2hÞ

2
64

3
75;

C2 ¼ G

0 sin 2h i � ðrz� 4lþ rz cos 2hÞ
i � cos h � cos 2h i � rz sin 2h

i � 2 sin h � sin 2h i � ðrz� 4l� rz cos 2hÞ

2
64

3
75: ð20Þ
In this section, the general displacement and stress solutions are successfully obtained in the Fourier transformed domain.

4. Solution of a single ellipsoidal inclusion in the film/substrate half-space

In this paper, the inclusion and the film are assumed to have the same elastic properties. The solution of the eigenstrain
problem of a single ellipsoidal inclusion in infinite space is given by Eshelby (1957, 1959), denoting u*, s* and t* as
displacement vector, in-plane stress vector and traction vector, respectively, with their Fourier transforms as ~u�, ~s� and ~t�.
If the elastic properties of the film and the inclusion are different, an artificial eigenstrain can be introduced to meet the
different elastic properties of both phases (Eshelby, 1957; Mura, 1986).

The solutions of the film are assumed to have the following form:
~ufðr; h; zÞ ¼ ~u�ðr; h; zÞ þ Af
1herzivf þ Af

2he�rziwf

~tf ðr; h; zÞ ¼ ~t�ðr; h; zÞ � irðBf
1herzivf þ Bf

2he�rziwf Þ
~sf ðr; h; zÞ ¼ ~s�ðr; h; zÞ � irðCf

1herzivf þ Cf
2he�rziwf Þ

; ð21Þ
and the solutions of the substrate are assumed to be represented as
~usðr; h; zÞ ¼ As
1herðz�tÞivs þ As

2he�rðz�tÞiws

~tsðr; h; zÞ ¼ �irðBs
1herðz�tÞivs þ Bs

2he�rðz�tÞiwsÞ
~ssðr; h; zÞ ¼ �irðCs

1herðz�tÞivs þ Cs
2he�rðz�tÞiwsÞ

: ð22Þ
The unknown vectors vf, mf, vs and ms can be determined by taking the boundary and bond conditions into consideration.
Boundary condition (3) and bond condition (4) in the transformed domain can be expressed as
~tf ¼ 0 at z ¼ 0; ð23Þ

~uf ¼ ~us; ~tf ¼ ~ts at z ¼ t; ð24Þ
respectively. Considering that the substrate’s thickness is infinite, Eq. (22) can be reduced to
~usðr; h; zÞ ¼ As
2he�rðz�tÞiws

~tsðr; h; zÞ ¼ �irBs
2he�rðz�tÞiwsÞ

~ssðr; h; zÞ ¼ �irCs
2he�rðz�tÞiwsÞ

; ð25Þ
since the displacement and stress components will be zero at the physically infinite.
Substituting Eqs. (23) and (24) into Eqs. (21) and (25), the unknown vectors vf, mf, vs and ms can be determined, and after-

wards the solutions of a single ellipsoidal inclusion in the film/substrate half-space can be obtained in the transformed
domain.

When solutions in the transformed domain are acquired, solutions in the physical domain can be easily obtained by car-
rying out the inverse Fourier transforms
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uiðx1; x2; zÞ ¼
1

ð2pÞ2
Z 1

�1

Z 1

�1
~uiðy1; y2; zÞe�iðx1y1þx2y2Þdy1 dy2 : ð26Þ
5. Effect of a thin film’s thickness on the stress field

To study the effect of a thin film’s thickness on the stress field, we applied the previous formulation to the model
described in Section 2. In this paper, the Poisson ratios of the film l1 and the substrate l2 are both 0.25, with shear moduli
G1 for the film and G2 = 5G1 for the substrate. The depth parameters d1 and d2 are set to the same variable d, which will
change its value in the following analyses. The eigenstrain of the ellipsoidal inclusion is assumed to be uniformed dilata-
tional, e.g. eij = dije*, in which e* is an arbitrary constant. Two types of ellipsoidal inclusions are discussed: in the first type,
a1 = 3,a2 = 2,a3 = 5 indicate a slim ellipsoidal inclusion; in the second type, a1 = 3,a2 = 5,a3 = 2, they indicate a flat ellipsoidal
inclusion.

In the process of computing, the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) are
adopted to substitute for the Fourier transforms and inverse Fourier transforms, in order to reduce the calculation time.
The skill of performing the fast Fourier transform (FFT) is also used in this paper to accelerate the calculation. The results
are presented in figures and tables, and are discussed below.

5.1. Comparison with FEM solutions

We first verify the solutions obtained in Section 4. The parameters of the ellipsoidal inclusion are set to a1 = 2,a2 = 2,a3 = 5
so that the problem can be simplified to an axisymmetric model and can be solved easily with the finite element method
(FEM). A comparison of the numerical results given by the current method and by FEM is shown in Fig. 2. This comparison
indicates that the results given by the current method are reliable.

5.2. Results of type 1: a slim ellipsoidal inclusion (a1 = 3,a2 = 2,a3 = 5)

As is shown clearly in Fig. 3, increasing the depth d decreases the stresses in the film/substrate system, especially for
stresses near the surface and interface. As the depth d increases, the curves of stress components r11, r22 and r33 in the
film/substrate half-space are much more similar to what they will become in infinite space (d = infinite). As we can see in
Fig. 3(a)–(c), curve d = 10 is so close to curve d = infinite that they appear to overlap. However, when the ellipsoidal inclusion
is very close to the surface and interface, stress fields in the film are rather different than in infinite space. From Eshelby’s
work (1957,1959), we know that the stress components r11, r22 and r33 are constant in the interior of the ellipsoidal inclu-
sion in infinite space if the eigenstrain is uniformed dilatational; however, when the same inclusion is laid in the film, they
do not keep constant anymore, which is obviously demonstrated from curves d = 0.1 and d = 1 in Fig. 3(a)–(c). We can also
note that the stresses inside the ellipsoidal inclusion are more affected by the free-surface condition than by the restriction of
the substrate with the higher shear modulus.

From Fig. 3, we also find that in the substrate, the stress component r33 diminishes slower than r11 and r22 from the
interface. With the exception of the stress component r33, all curves of the stress components r11 and r22 have a rough jump
when crossing the interface, which can be illustrated more clearly in Fig. 4; this shows the relationship between the depth of
an ellipsoidal inclusion and the stress components on the center of the surface and interface.

5.3. Results of type 2: a flat ellipsoidal inclusion (a1 = 3,a2 = 5,a3 = 2)

Though Fig. 5 shows similar patterns and trends as Fig. 3, the stress fields are greatly affected by the geometric change of
the ellipsoidal inclusion. At the same depth d, the influence of the stress field on the flat ellipsoidal inclusion is stronger than
Fig. 2. Comparison between the current method and FEM.



Fig. 3. Type 1’s stress components along the z-axis (line II–II) at various depths d. (a) Normal stress r11; (b) normal stress r22; (c) normal stress r33.

Fig. 4. Type 1’s stress components at the center of the surface (point A) and the interface (point B) with the ellipsoidal inclusion at different depths d.
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that on the slim ellipsoidal inclusion. However, for the same thickness t (t = 2d + 2a3) of the film, the influence on the flat
ellipsoidal inclusion is weaker than that on the slim one. Comparing Fig. 4 with Fig. 6, we can also easily note that, with
the depth d increasing, the stress components in the former decrease faster than those in the latter.



Fig. 5. Type 2’s stress components along the z-axis (line III–III) at various depths d. (a) Normal stress r11; (b) normal stress r22; (c) normal stress r33.
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5.4. Effect of a thin film’s thickness

As is shown in Figs. 3 and 5, increasing the depth d makes the curves of the stress components r11, r22 and r33 in the film/
substrate half-space more and more similar to what they will be in infinite space (d = infinite). For instance, the curve d = 10
Fig. 6. Type 2’s stress components at the center of the surface (point C) and the interface (point D) with the ellipsoidal inclusion at different depths d.



X. Liang et al. / International Journal of Solids and Structures 46 (2009) 322–330 329
almost overlays the curve d = infinite in Fig. 3, and the curve d = 13 almost overlays the curve d = infinite in Fig. 5 in the
region of the film. To give a quantitative description of these behaviors, Tables 1 and 2 list the values of the stress
components in the films (t = 30) and infinite spaces for type 1 and type 2, respectively.

Except for those near the surface and interface, differences of the stress components in the film and in infinite space are
no more than 32%, especially in the case of r33 where the difference is less than 10%. Furthermore, the values of the stress
components within the ellipsoidal inclusion in the film are very close to the values in infinite space, with differences of less
than 1%. This shows the weak effect of a thin film’s thickness on the stress field. In order to obtain such results, we find that
depth d and parameters a1, a2, and a3 need to satisfy following equation:
Table 1
Stress c

z

�15
�12
�9
�6
�5�

�5+

�3
0
3
5�

5+

6
9
12
15

The ori

Table 2
Stress c

z

�15
�12
�8
�5
�2�

�2+

�1
0
1
2�

2+

5
8
12
15

The ori
dþ a3 ¼ 3Maxða1; a2; a3Þ; ð27Þ
where d = 10 for type 1, and d = 13 for type 2.
Thus, in the general engineering calculation for the eigenstrain of an ellipsoidal inclusion in the film/substrate half-space:

if the prospective stress components are not near the surface and interface, and such a formula is satisfied
Minðd1;d2Þ þ a3 P k �Maxða1; a2; a3Þ; ð28Þ
where k = 3 here (or could be larger for more conservative results), the stresses in the infinite space can substitute as the
stresses in the film for convenience-sake, without bringing in severe errors. The objective of Eq. (28) may be extended to
general inclusions; in that case, however, its validity needs to be verified.
omponents in the film (t = 30) and in infinite space for type 1

r11 r22 r33

Film Infinite Difference (%) Film Infinite Difference (%) Film Infinite Difference (%)

0.0154 �0.0054 �387.29 0.0215 �0.0053 �509.85 �0.0103 �0.0430 �76.11
�0.0053 �0.0095 �43.69 �0.0053 �0.0091 �42.03 �0.0718 �0.0871 �17.52
�0.0114 �0.0153 �25.41 �0.0098 �0.0137 �28.19 �0.2134 �0.2248 �5.07

0.1509 0.1476 2.21 0.1588 0.1555 2.11 �1.0575 �1.0683 �1.01
2.3328 2.3297 0.13 1.8595 1.8564 0.17 �3.0126 �3.0233 �0.36
�1.6340 �1.6380 �0.24 �2.2493 �2.2533 �0.18 �2.7646 �2.7753 �0.39
�1.6344 �1.6380 �0.22 �2.2497 �2.2533 �0.16 �2.7648 �2.7753 �0.38
�1.6349 �1.6380 �0.19 �2.2502 �2.2533 �0.14 �2.7567 �2.7753 �0.67
�1.6351 �1.6380 �0.18 �2.2504 �2.2533 �0.13 �2.7652 �2.7753 �0.36
�1.6352 �1.6380 �0.17 �2.2505 �2.2533 �0.13 �2.7654 �2.7753 �0.36

2.0210 2.0191 0.09 1.6108 1.6089 0.12 �3.0134 �3.0233 �0.33
0.1391 0.1279 8.72 0.1367 0.1348 1.41 �1.0584 �1.0683 �0.93
�0.0120 �0.0133 �9.64 �0.0098 �0.0118 �17.06 �0.2153 �0.2248 �4.23
�0.0057 �0.0082 �30.65 �0.0053 �0.0079 �32.44 �0.0794 �0.0871 �8.82
�0.0036 �0.0046 �21.99 �0.0088 �0.0046 93.73 �0.0446 �0.0430 3.69

gin is located at the center of the ellipsoidal inclusion as is shown in Fig. 3.

omponents in the film (t = 30) and in infinite space for type 2

r11 r22 r33

Film Infinite Difference (%) Film Infinite Difference (%) Film Infinite Difference (%)

0.0130 �0.0044 �394.91 0.0185 �0.0047 �495.73 �0.0090 �0.0377 �76.22
�0.0047 �0.0083 �43.44 �0.0058 �0.0092 �36.95 �0.0786 �0.0900 �12.73
�0.0072 �0.0105 �31.68 �0.0104 �0.0137 �24.07 �0.2006 �0.2104 �4.67

0.0381 0.0352 8.15 0.0309 0.0281 10.06 �0.6333 �0.6429 �1.49
1.4574 1.4549 0.17 1.8589 1.8564 0.13 �2.3821 �2.3915 �0.39
�2.7721 �2.7753 �0.12 �2.2501 �2.2533 �0.14 �1.6286 �1.6380 �0.57
�2.7722 �2.7753 �0.11 �2.2503 �2.2533 �0.14 �1.6287 �1.6380 �0.57
�2.7723 �2.7753 �0.11 �2.2504 �2.2533 �0.13 �1.6287 �1.6380 �0.57
�2.7724 �2.7753 �0.11 �2.2504 �2.2533 �0.13 �1.6288 �1.6380 �0.56
�2.7724 �2.7753 �0.10 �2.2505 �2.2533 �0.13 �1.6288 �1.6380 �0.56

1.2628 1.2609 0.15 1.6108 1.6089 0.12 �2.3823 �2.3915 �0.38
0.0324 0.0305 6.15 0.0261 0.0243 7.50 �0.6339 �0.6429 �1.40
�0.0072 �0.0091 �21.47 �0.0100 �0.0118 �15.87 �0.2017 �0.2104 �4.16
�0.0044 �0.0072 �38.50 �0.0055 �0.0080 �31.64 �0.0822 �0.0900 �8.65
�0.0029 �0.0038 �23.32 �0.0079 �0.0040 96.07 �0.0398 �0.0377 5.57

gin is located at the center of the ellipsoidal inclusion as is shown in Fig. 5.
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6. Conclusions

In this paper, we derived the formulation for calculating the stress field due to the eigenstrain of an ellipsoidal inclusion in
the film/substrate half-space. The formulation is based on the cylindrical system of vector functions, and afterwards the solu-
tions are expressed in terms of Fourier transforms. Two types of ellipsoidal inclusions, e.g. the slim ellipsoidal inclusion and
the flat ellipsoidal inclusion, are discussed and compared in detail to study the effect of a thin film’s thickness on the stress
field. Numerical examples in this paper show that if a thin film’s thickness increases, its effect on the stress field will become
weaker, and could even be neglected. In the end, a guide rule is introduced to simplify the calculation of similar problems in
the engineering field.
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